首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Single amino acids determine specificity of binding of protein kinase A regulatory subunits by protein kinase A anchoring proteins.
Authors:K Miki  E M Eddy
Institution:Gamete Biology Section, Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
Abstract:Cyclic AMP-dependent protein kinase is tethered to protein kinase A anchoring proteins (AKAPs) through regulatory subunits (R) by RIalpha-specific, RIIalpha-specific, or RIalpha/RIIalpha dual-specific binding. Ala- and Val-scanning mutagenesis determined that hydrophobic amino acids at three homologous positions are required for binding of RIalpha to FSC1/AKAP82 domain B and RIIalpha to AKAP Ht31. A mutation at the middle position reversed the binding specificity of both AKAPs, and mutations at this same position of the dual-specific domain A of FSC1/AKAP82 converted it into either an RIalpha or RIIalpha binding domain. This suggests that hydrophobic amino acids at three conserved positions within the primary sequence and an amphipathic helix of AKAPs are required for cyclic AMP-dependent protein kinase binding, with the size of the aliphatic side chain at the middle position determining RIalpha or RIIalpha binding specificity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号