首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Further in vitro exploration fails to support the allosteric three-site model
Authors:Petropoulos Alexandros D  Green Rachel
Institution:Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
Abstract:Ongoing debate in the ribosome field has focused on the role of bound E-site tRNA and the Shine-Dalgarno-anti-Shine-Dalgarno (SD-aSD) interaction on A-site tRNA interactions and the fidelity of tRNA selection. Here we use an in vitro reconstituted Escherichia coli translation system to explore the reported effects of E-site-bound tRNA and SD-aSD interactions on tRNA selection events and find no evidence for allosteric coupling. A large set of experiments exploring the role of the E-site tRNA in miscoding failed to recapitulate the observations of earlier studies (Di Giacco, V., Márquez, V., Qin, Y., Pech, M., Triana-Alonso, F. J., Wilson, D. N., and Nierhaus, K. H. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 10715-10720 and Geigenmüller, U., and Nierhaus, K. H. (1990) EMBO J. 9, 4527-4533); the frequency of miscoding was unaffected by the presence of E-site-bound cognate tRNA. Moreover, our data provide clear evidence that the reported effects of the SD-aSD interaction on fidelity can be attributed to the binding of ribosomes to an unanticipated site on the mRNA (in the absence of the SD sequence) that provides a cognate pairing codon leading naturally to incorporation of the purported "noncognate" amino acid.
Keywords:Protein Synthesis  Ribosomal RNA (rRNA)  Ribosomes  Transfer RNA (tRNA)  Translation  E-site  Fidelity  Shine-Dalgarno
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号