首页 | 本学科首页   官方微博 | 高级检索  
     


Thioredoxin Reductase Deficiency Potentiates Oxidative Stress,Mitochondrial Dysfunction and Cell Death in Dopaminergic Cells
Authors:Pamela Lopert  Brian J. Day  Manisha Patel
Affiliation:1. Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America.; 2. Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America.; 3. Department of Medicine, National Jewish Health, Denver, Colorado, United States of America.; Emory University, United States of America,
Abstract:Mitochondria are considered major generators of cellular reactive oxygen species (ROS) which are implicated in the pathogenesis of neurodegenerative diseases such as Parkinson’s disease (PD). We have recently shown that isolated mitochondria consume hydrogen peroxide (H2O2) in a substrate- and respiration-dependent manner predominantly via the thioredoxin/peroxiredoxin (Trx/Prx) system. The goal of this study was to determine the role of Trx/Prx system in dopaminergic cell death. We asked if pharmacological and lentiviral inhibition of the Trx/Prx system sensitized dopaminergic cells to mitochondrial dysfunction, increased steady-state H2O2 levels and death in response to toxicants implicated in PD. Incubation of N27 dopaminergic cells or primary rat mesencephalic cultures with the Trx reductase (TrxR) inhibitor auranofin in the presence of sub-toxic concentrations of parkinsonian toxicants paraquat; PQ or 6-hydroxydopamine; 6OHDA (for N27 cells) resulted in a synergistic increase in H2O2 levels and subsequent cell death. shRNA targeting the mitochondrial thioredoxin reductase (TrxR2) in N27 cells confirmed the effects of pharmacological inhibition. A synergistic decrease in maximal and reserve respiratory capacity was observed in auranofin treated cells and TrxR2 deficient cells following incubation with PQ or 6OHDA. Additionally, TrxR2 deficient cells showed decreased basal mitochondrial oxygen consumption rates. These data demonstrate that inhibition of the mitochondrial Trx/Prx system sensitizes dopaminergic cells to mitochondrial dysfunction, increased steady-state H2O2, and cell death. Therefore, in addition to their role in the production of cellular H2O2 the mitochondrial Trx/Prx system serve as a major sink for cellular H2O2 and its disruption may contribute to dopaminergic pathology associated with PD.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号