首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of Envelope Proteins on the Mechanical Properties of Influenza Virus
Authors:Iwan A T Schaap  Frédéric Eghiaian  Amédée des Georges  Claudia Veigel
Institution:From the National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom and ;the §Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom
Abstract:The envelope of the influenza virus undergoes extensive structural change during the viral life cycle. However, it is unknown how lipid and protein components of the viral envelope contribute to its mechanical properties. Using atomic force microscopy, here we show that the lipid envelope of spherical influenza virions is ∼10 times softer (∼0.05 nanonewton nm−1) than a viral protein-capsid coat and sustains deformations of one-third of the virion''s diameter. Compared with phosphatidylcholine liposomes, it is twice as stiff, due to membrane-attached protein components. We found that virus indentation resulted in a biphasic force-indentation response. We propose that the first phase, including a stepwise reduction in stiffness at ∼10-nm indentation and ∼100 piconewtons of force, is due to mobilization of membrane proteins by the indenting atomic force microscope tip, consistent with the glycoprotein ectodomains protruding ∼13 nm from the bilayer surface. This phase was obliterated for bromelain-treated virions with the ectodomains removed. Following pH 5 treatment, virions were as soft as pure liposomes, consistent with reinforcing proteins detaching from the lipid bilayer. We propose that the soft, pH-dependent mechanical properties of the envelope are critical for the pH-regulated life cycle and support the persistence of the virus inside and outside the host.
Keywords:Atomic Force Microscopy  Influenza Virus  Liposomes  Membrane Biophysics  Virus
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号