首页 | 本学科首页   官方微博 | 高级检索  
   检索      


MAPK Signaling Drives Inflammation in LPS-Stimulated Cardiomyocytes: The Route of Crosstalk to G-Protein-Coupled Receptors
Authors:W Joshua Frazier  Jianjing Xue  Wendy A Luce  Yusen Liu
Institution:1. Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America.; 2. Center for Perinatal Research, The Research Institute at Nationwide Children''s Hospital, Columbus, Ohio, United States of America.; 3. Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children''s Hospital, Columbus, Ohio, United States of America.; Wayne State University School of Medicine, United States of America,
Abstract:Profound cardiovascular dysfunction is an important cause of mortality from septic shock. The molecular underpinnings of cardiac dysfunction during the inflammatory surge of early sepsis are not fully understood. MAPKs are important signal transducers mediating inflammation whereas G-protein signaling pathways modulate the cardiac response to stress. Using H9c2 cardiomyocytes, we investigated the interaction of MAPK and G-protein signaling in a sepsis model to test the hypothesis that the cardiomyocyte inflammatory response is controlled by MAPKs via G-protein-mediated events. We found that LPS stimulated proinflammatory cytokine production was markedly exacerbated by siRNA knockdown of the MAPK negative regulator Mkp-1. Cytokine production was blunted when cells were treated with p38 inhibitor. Two important cellular signaling molecules typically regulated by G-protein-coupled receptors, cAMP and PKC activity, were also stimulated by LPS and inflammatory cytokines TNF-α and IL-6, through a process regulated by Mkp-1 and p38. Interestingly, neutralizing antibodies against Gαs and Gαq blocked the increase in cellular cAMP and PKC activation, respectively, in response to inflammatory stimuli, indicating a critical role of G-protein coupled receptors in this process. LPS stimulation increased COX-2 in H9c2 cells, which also express prostaglandin receptors. Blockade of G-protein-coupled EP4 prostaglandin receptor by AH 23848 prevented LPS-induced cAMP increase. These data implicate MAPKs and G-proteins in the cardiomyocyte inflammatory response to LPS as well as crosstalk via COX-2-generated PGE2. These data add to our understanding of the pathogenesis of septic shock and have the potential to guide the selection of future therapeutics.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号