首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of staurosporine-induced apoptosis on endothelial nitric oxide synthase in transfected COS-7 cells and primary endothelial cells
Authors:Tesauro M  Thompson W C  Moss J
Institution:Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Building10/Room 6D03, Bethesda, MD 20892-1590, USA.
Abstract:Nitric oxide (NO) may block apoptosis by inhibiting caspases via S-nitrosylation of cysteines. Here, we investigated whether effector caspases might cleave and thereby inhibit endothelial nitric oxide synthase (eNOS). Exposure of eNOS-transfected COS-7 cells and bovine aortic endothelial cells to staurosporine resulted in significant loss of 135-kDa eNOS protein and activity, and appearance of a 60-kDa eNOS fragment; effects were inhibited by the general caspase inhibitor, benzyloxycarbonyl-Val-Ala-AspOMe]-fluoromethyl ketone (zVAD-fmk). In eNOS-transfected COS-7 cells, staurosporine-induced activation of caspase-3 and poly(ADP-ribose) polymerase (PARP) cleavage coincided with increased eNOS degradation and decreased activity. Loss of eNOS activity was greater than the degree of proteolysis. Incubation of immunoprecipitated eNOS with caspase-3, caspase-6 or caspase-7 resulted in eNOS cleavage. Staurosporine, a general protein kinase inhibitor, also reduced phosphorylation and decreased calmodulin binding, an effect that may explain the reduction in activity. eNOS, therefore, is both an inhibitor of apoptosis and a target of apoptosis-associated proteolysis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号