Involvement of cumulus cells stimulated by FSH in chromatin condensation and the activation of maturation-promoting factor in bovine oocytes |
| |
Authors: | Tatemoto H Terada T |
| |
Affiliation: | Department of Bioresources, Hiroshima Prefectural University, Shobara, Japan. |
| |
Abstract: | The effects of FSH-stimulated cumulus cells on the regulatory mechanisms of chromatin condensation and maturation-promoting factor (MPF) activation around the time of germinal vesicle breakdown (GVBD) in bovine oocytes were examined. Chromatin condensation occurred in oocytes arrested at the germinal vesicle (GV) stage by protein synthesis inhibitor, cycloheximide, but this condensation was blocked by FSH-stimulated cumulus cells. However, treatment with cyclic AMP (cAMP)-dependent protein kinase inhibitor, H-8, dramatically increased the proportion of oocytes possessing GVs with condensed bivalents. Under the condition of inhibited protein synthesis, the phosphorylation form of p34cdc2 kinase was not changed due to chromatin condensation, although the activity of histone H1 kinase was significantly increased compared with that of oocytes possessing GVs with filamentous bivalents. The cycloheximide-dependent GVBD block was overcome by okadaic acid (OA) in 48 and 13% of the oocytes in the absence and presence of FSH, respectively. An initial 6-h culture period critical for protein synthesis was necessary for OA to counteract the inhibitory effect exerted by cycloheximide on the induction of GVBD and activation of histone H1 kinase in the absence of FSH, whereas this first culture period was prolonged for 2 h in the presence of FSH. Furthermore, even in FSH-stimulated oocytes, H-8 facilitated an OA-counteracted overcome of the cycloheximide-dependent GVBD block after 2 h of initial culture for protein synthesis. From these results, it is concluded that cAMP-dependent protein kinase activity regulated by cumulus cells following FSH-stimulation requests plays a role in the complex mechanism of chromatin condensation and MPF activation leading to meiotic resumption in bovine oocytes. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|