Abstract: | 1. Seveal selective reagents were employed to identify the amino acid residues essential for the catalytic activity of sucrase-isomaltase. 2. Modification of histidine, lysine and carboxyl residues resulted in a partial inactivation of the enzyme. Substrates or competitive inhibitors provided protection against inactivation only in the reaction of carboxyl groups with carbodiimide (+lycine ethyl ester) or with diazoacetic ethyl ester. This indicated the occurrence of carboxyl groups at the two active centers of the enzyme complex. 3. Protection against inactivation of the enzyme by carbodiimide was provided also by the presence of alkali and alkaline earth metal ions, which are non-essential activators of sucrase-isomaltase. The presence of Na+ and Ba2+ protected approximately one carboxyl group per active center from reacting with carbodiimide plus glycine ethyl ester. 4. The carbodiimide-reactive groups were not identical with the two carboxylate groups recently found to react with conduritol-B-epoxide, an active-site-directed inhibitor of sucrase-isomaltase (Quaroni, A. and Semenza, G., 1976, J. Biol. Chem 251,3250--3253). A possible role for the carbodiimide-reactive carboxyl groups at the active centers of sucrase-isomaltase is discussed. |