Abstract: | We have investigated the covalent binding of dicyclohexylcarbodiimide (DCCD) to cytochrome c oxidase in relation to its inhibition of ferrocytochrome c-induced H+ translocation by the enzyme reconstituted in lipid vesicles. DCCD bound to the reconstituted oxidase in a time- and concentration-dependent manner which appeared to correlate with its inhibition of H+ translocation. In both reconstituted vesicles and intact beef heart mitochondria, the DCCD-binding site was located in subunit III of the oxidase. The apolar nature of DCCD and relatively minor effects of the hydrophilic carbodiimide, 1-ethyl-(3-dimethylaminopropyl)-carbodiimide, on H+ translocation by the oxidase indicate that the site of action of DCCD is hydrophobic. DCCD also bound to isolated cytochrome c oxidase, though in this case subunits III and IV were labeled. The maximal overall stoichiometries of DCCD molecules bound per cytochrome c oxidase molecule were 1 and 1.6 for the reconstituted and isolated enzymes, respectively. These findings point to subunit III of cytochrome c oxidase having an important role in H+ translocation by the enzyme and indicate that DCCD may prove a useful tool in elucidating the mechanism of H+ pumping. |