首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Diazoxide ameliorates microcirculatory disturbances through PKC-dependent Pathway in I/R-injured rat cremaster muscles
Authors:William?Wei  Fu-Chan?Wei  Email author" target="_blank">Li-Man?HungEmail author
Institution:(1) Department of Life Science and Plastic & Reconstructive Surgery, College of Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
Abstract:Summary Diazoxide is a selective mitochondria ATP-sensitive potassium (KATP) channel opener, which has been reported to preserve the microvascular integrity of ischemia-reperfusion (I/R)-injured tissues. Our study aimed to assess diazoxide’s effects on I/R-injured cremaster muscles and to further elucidate its underlying mechanisms. Male Sprague Dawley (SD) rats were randomized (n = 8 per group) into four groups: sham-operated control group, I/R group (4 h of pudic epigastic artery ischemia followed by 2 h of reperfusion), diazoxide + I/R group, and chelerythrine (PKC inhibitor)+diazoxide+I/R group. Microscopically, we observed that I/R markedly increased the number of rolling, adhering, and transmigrating leukocytes. I/R also markedly decreased the number of functional capillaries. Biochemically, we found that I/R significantly increased TNF-α, E-selectin,L-selectin and P-selectin expressions. However, I/R did not cause significant changes in ICAM-1 and PECAM-1 expressions. On the other hand, in I/R + diazoxide group, we found that diazoxide reduced the number of rolling, adhering, and transmigrating leukocytes. Furthermore, biochemical study revealed that diazoxide caused only a decrease in L-selectin expression but had no effect on TNF-α, E-selectin, P-selectin, ICAM-1, and PECAM-1 expressions. Finally, in chelerythrine + diazoxide + I/R group, we observed that diazoxide’s protective effects were blocked by the addition of chelerythrine. Diazoxide’s ability to protect against I/R injury was confirmed by the observation that it reduced the number of rolling, adhering, and transmigrating leukocytes, and increased the number of functional capillaries. Our results indicated that diazoxide operated via a PKC-dependent pathway to achieve protection against I/R injury.
Keywords:chelerythrine  diazoxide  ischemia-reperfusion  L-selectin" target="_blank">L-selectin  microcirculation
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号