首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Determination of the kinetic parameters of the phenol-degrading thermophile Bacillus themoleovorans sp. A2
Authors:H Feitkenhauer  S Schnicke  R Müller  H Märkl
Institution:Laboratory of Chemical Engineering and Industrial Chemistry, ETH Zürich H?nggerberg HCI, 8093 Zürich, Switzerland,
Institute of Bioprocess and Biochemical Engineering, Technical University of Hamburg-Harburg, Denickestrasse 15, 21071 Hamburg, Germany,
Institute of Technical Biochemistry, Technical University of Hamburg-Harburg, Denickestrasse 15, 21071 Hamburg, Germany,
Abstract:Phenolic compounds are pollutants in many wastewaters, e.g. from crude oil refineries, coal gasification plants or olive oil mills. Phenol removal is a key process for the biodegradation of pollutants at high temperatures because even low concentrations of phenol can inhibit microorganisms severely. Bacillus thermoleovorans sp. A2, a recently isolated thermophilic strain (temperature optimum 65 degrees C), was investigated for its capacity to degrade phenol. The experiments revealed that growth rates were about four times higher than those of mesophilic microorganisms such as Pseudomonas putida. Very high specific growth rates of 2.8 h(-1) were measured at phenol concentrations of 15 mg/l, while at phenol concentrations of 100-500 mg/l growth rates were still in the range of 1 h(-1). The growth kinetics of the thermophilic Bacillus thermoleovorans sp. A2 on phenol as sole carbon and energy source can be described using a three-parameter model developed in enzyme kinetics. The yield coefficient Yx/s of 0.8-1 g cell dry weight/g phenol was considerably higher than cell yields of mesophilic bacteria (Yx/s 0.40-0.52 g cell dry weight/g phenol). The highest growth rate was found at pH 6. Bacillus thermoleovorans sp. A2 was found to be insensitive to hydrodynamic shear stress in stirred bioreactor experiments (despite possible membrane damage caused by phenol) and flourished at an ionic strength of the medium of 0.25(-1) mol/l (equivalent to about 15-60 g NaCl/l). These exceptional properties make Bacillus thermoleovorans sp. A2 an excellent candidate for technical applications.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号