首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Membrane potential responses controlling chemodispersal of Paramecium caudatum from quinine
Authors:K Oami
Institution:(1) Institute of Biological Science, University of Tsukuba, Tsukuba, 305 Ibaraki, Japan
Abstract:Membrane potential responses of a ciliate protozoan Paramecium caudatum to the external application of quinine were investigated in relation to its motile activities. Wild-type specimens swimming in the reference solution did not enter into a quinine-containing (0.5 mM) test solution due to avoiding responses exhibited at the border between the two solutions, and therefore stayed in the reference solution (chemodispersal). Squirting of a quinine-containing test solution over a wild-type specimen evoked a train of action potentials superimposed on a depolarizing chemoreceptor potential. Squirting of a quinine-containing test solution over a CNR-mutant specimen defective in voltage-gated Ca2+ channel evoked only chemoreceptor potentials, which consisted of an initial transient depolarization, a following transient hyperpolarization and a sustained depolarization. A current-evoked action potential became larger in its amplitude and longer in its duration with the external application of quinine. Under the voltage-clamp condition, the fast inward current did not change whereas the delayed outward current decreased with the external application of quinine. It is concluded that quinine is a potent repellent for Paramecium because it produces a depolarizing chemoreceptor potential which evokes action potentials and prolongs the duration of the action potential.
Keywords:Chemodispersal  Chemoreceptor potential  Paramecium caudatum  Quinine
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号