首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Soil strength and water content influences on corn root distribution in a sandy soil
Authors:Laboski  CAM  Dowdy  RH  Allmaras  RR  Lamb  JA
Institution:(1) Agricultural Research Service, U.S. Department of Agriculture, St. Paul, MN 55108, USA;(2) Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, USA
Abstract:Initial field observations revealed a shallow corn (Zea mays L.) root system on a Zimmerman fine sand in a corn/soybean (Glycine max L.) rotation. Since root distribution influences crop water and nutrient absorption, it is essential to identify factors limiting root growth. The objective of this study was to determine the factor(s) limiting corn rooting depth on an irrigated fine sand soil. Bulk density, saturated hydraulic conductivity, and soil water retention were measured on undisturbed soil cores. Corn root distribution assessed at tasseling over a 3-yr period showed an average of 94% of total root length within the upper 0.60 m of soil with 85% in the upper 0.30 m of soil. Mechanical impedance was estimated with a cone penetrometer on two dates with differing water contents. Cone penetrometer measurements greater than 3 MPa indicated mechanical impedance in soil layers extending from 0.15 to 0.35 m deep. Penetration resistance decreased as soil water content increased. However, soil water contents greater than field capacity were required to decrease penetration resistance below the 3 MPa threshold. Such water saturated conditions only occurred for short periods immediately after precipitation or irrigation events, thus roots usually encountered restrictive soil strengths. The soil layer from 0.15 to 0.60 m had high bulk density, 1.57 Mg m-3. This compacted soil layer, with slower saturated hydraulic conductivities (121 to 138 mm hr-1), held more water than the soil above or below it and reduced water movement through the soil profile. Crop water use occurred to a depth of approximately 0.75 m. In conclusion, a compacted soil layer confined roots almost entirely to the top 0.60 m of soil because it had high soil strength and bulk density. The compacted layer, in turn, retained more water for crop use.
Keywords:compaction  cone penetrometer  corn (Zea mays L  )  soil strength  soil water content
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号