首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Omnidirectional sensory and motor volumes in electric fish
Authors:Snyder James B  Nelson Mark E  Burdick Joel W  Maciver Malcolm A
Institution:1 Department of Biomedical Engineering, R.R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois, United States of America, 2 Department of Molecular and Integrative Physiology and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois, United States of America, 3 Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, United States of America, 4 Department of Mechanical Engineering, R.R. McCormick School of Engineering and Applied Science, and Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
Abstract:Active sensing organisms, such as bats, dolphins, and weakly electric fish, generate a 3-D space for active sensation by emitting self-generated energy into the environment. For a weakly electric fish, we demonstrate that the electrosensory space for prey detection has an unusual, omnidirectional shape. We compare this sensory volume with the animal's motor volume—the volume swept out by the body over selected time intervals and over the time it takes to come to a stop from typical hunting velocities. We find that the motor volume has a similar omnidirectional shape, which can be attributed to the fish's backward-swimming capabilities and body dynamics. We assessed the electrosensory space for prey detection by analyzing simulated changes in spiking activity of primary electrosensory afferents during empirically measured and synthetic prey capture trials. The animal's motor volume was reconstructed from video recordings of body motion during prey capture behavior. Our results suggest that in weakly electric fish, there is a close connection between the shape of the sensory and motor volumes. We consider three general spatial relationships between 3-D sensory and motor volumes in active and passive-sensing animals, and we examine hypotheses about these relationships in the context of the volumes we quantify for weakly electric fish. We propose that the ratio of the sensory volume to the motor volume provides insight into behavioral control strategies across all animals.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《PLoS Biology》浏览原始摘要信息
点击此处可从《PLoS Biology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号