首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of human nicotinate phosphoribosyltransferase: Kinetic studies, structure prediction and functional analysis by site-directed mutagenesis
Authors:Galassi Lucia  Di Stefano Michele  Brunetti Lucia  Orsomando Giuseppe  Amici Adolfo  Ruggieri Silverio  Magni Giulio
Affiliation:Dipartimento di Patologia Molecolare e Terapie Innovative - Sezione Biochimica, Università Politecnica delle Marche, Via Ranieri 67, 60131 Ancona, Italy.
Abstract:Nicotinate phosphoribosyltransferase (NaPRT, EC 2.4.2.11) catalyzes the conversion of nicotinate (Na) to nicotinate mononucleotide, the first reaction of the Preiss-Handler pathway for the biosynthesis of NAD(+). Even though NaPRT activity has been described to be responsible for the ability of Na to increase NAD(+) levels in human cells more effectively than nicotinamide (Nam), so far a limited number of studies on the human NaPRT have appeared. Here, extensive characterization of a recombinant human NaPRT is reported. We determined its major kinetic parameters and assayed the influence of different compounds on its enzymatic activity. In particular, ATP showed an apparent dual stimulation/inhibition effect at low/high substrates saturation, respectively, consistent with a negative cooperativity model, whereas inorganic phosphate was found to act as an activator. Among other metabolites assayed, including nucleotides, nucleosides, and intermediates of carbohydrates metabolism, some showed inhibitory properties, i.e. CoA, several acyl-CoAs, glyceraldehyde 3-phosphate, phosphoenolpyruvate, and fructose 1,6-bisphosphate, whereas dihydroxyacetone phosphate and pyruvate exerted a stimulatory effect. Furthermore, in light of the absence of crystallographic data, we performed homology modeling to predict the protein three-dimensional structure, and molecular docking simulations to identify residues involved in the recognition and stabilization of several ligands. Most of these residues resulted universally conserved among NaPRTs, and, in this study, their importance for enzyme activity was validated through site-directed mutagenesis.
Keywords:Human NaPRT   Enzyme kinetics   Homology modeling   Molecular docking   Site-directed mutagenesis
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号