首页 | 本学科首页   官方微博 | 高级检索  
     


The reactions of hydrogen peroxide with bovine cytochrome c oxidase
Authors:Jünemann S  Heathcote P  Rich P R
Affiliation:The Glynn Laboratory of Bioenergetics, Department of Biology, University College London, Gower Street, London, UK.
Abstract:Oxidised cytochrome c oxidase is known to react with two molecules of hydrogen peroxide to form consecutively 607 nm 'Peroxy' and 580-nm 'Ferryl' species. These are widely used as model compounds for the equivalent P and F intermediates of the catalytic cycle. However, kinetic analysis of the reaction with H(2)O(2) in the pH range 6.0-9.0 reveals a more complex situation. In particular, as the pH is lowered, a 580-nm compound can be formed by reaction with a single H(2)O(2). This species, termed F(&z.rad;), is spectrally similar, but not identical, to F. The reactions are equivalent to those previously reported for the bo type quinol oxidase from Escherichia coli (T. Brittain, R.H. Little, C. Greenwood, N.J. Watmough, FEBS Lett. 399 (1996) 21-25) where it was proposed that F(&z.rad;) is produced directly from P. However, in the bovine oxidase F(&z.rad;) does not appear in samples of the 607-nm form, P(M), produced by CO/O(2) treatment, even at low pH, although this form is shown to be identical to the H(2)O(2)-derived P state, P(H), on the basis of spectral characteristics and kinetics of reaction with H(2)O(2). Furthermore, lowering the pH of a sample of P(M) or P(H) generated at high pH results in F(&z.rad;) formation only on a minutes time scale. It is concluded that P and F(&z.rad;) are not in a rapid, pH-dependent equilibrium, but instead are formed by distinct pathways and cannot interconvert in a simple manner, and that the crucial difference between them lies in their patterns of protonation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号