首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biochemical and immunological identification of cytokeratin proteins present in hepatocytes of mammalian liver tissue
Authors:Werner W Franke  Helmut Denk  Romana Kalt  Erika Schmid
Abstract:Hepatocytes of mammalian liver are known to contain intermediate-sized filaments of tonofilament morphology. Unlike many other epithelial cells, including cultured hepatocytes and hepatoma cells, hepatocytes present in normal liver tissue have been reported not to react, in significant intensity, with various preparations of antibodies to human and bovine epidermal prekeratin 2,6]. We have therefore examined, by biochemical and immunological methods, the cytoskeletal composition of hepatocytes grown in the body.Cytoskeletal preparations from hepatocytes of mouse and rat liver tissue resistant to high salt buffer and Triton X-100 are enriched in tangles of intermediate filaments and contain, besides some residual microfilamentous actin, a characteristic set of polypeptides. One- and two-dimensional gel electrophoresis reveals the presence of two major cytokeratin components, which appear as ‘pairs’ of isoelectric variants (component A, Mr 55 000, apparent pI values, 6.40 and 6.45; component D, Mr 49000, apparent pI values 5.43 and 5.38), and five minor components (Mr range from 41000 to 53 000), most of them also as ‘pairs’ of polypeptides slightly different in isoelectric pH value. These polypeptide patterns are very similar in mouse and rat liver although some minor but significant differences have been noted between the two species. The polypeptide patterns of liver cytoskeletons are also similar to—but clearly not identical with—the cytoskeletal protein patterns observed in other epithelial tissues and cells, including various lines of cultured rat hepatocytes and hepatoma cells.Guinea pig antibodies raised against individual cytokeratin proteins of mouse liver and against certain prekeratin polypeptides present in desmosome-attached tonofilaments of bovine muzzle are described which differ from previously described prekeratin antibodies. These prekeratin antibodies not only react with filament bundles of the prekeratin type present in many cultured epithelial cells (e.g. murine HEL, human HeLa, rat kangaroo PtK2) and various epithelial tissues, but also allow the detection of the cytokeratin components present in parenchymal cells of liver and pancreas of various species, man included. Immunofluorescence microscopy on frozen sections of liver using these antibodies reveals a novel structure, i.e. a three-dimensional filament meshwork extending throughout the whole cytoplasm of the hepatocyte, with higher intensity of staining in pericanalicular regions.The results show that parenchymal cells of normal liver and pancreas contain filaments of the cytokeratin type that are related to but not identical with epidermal prekeratin. The hepatocyte filaments appear to be different from prekeratin-type filaments present in epidermis and several other epithelial cells, both in some antigenic determinants exposed and in polypeptide composition. Our findings support the concept of the existence of a family of intermediate filament proteins, cytokeratins, containing many different polypeptides that are expressed in different epithelial cells in certain characteristic subsets in a cell type-specific mode.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号