首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products
Authors:M Minekus  M Smeets-Peeters  A Bernalier  S Marol-Bonnin  R Havenaar  P Marteau  M Alric  G Fonty  J H J Huis in't Veld
Institution:(1) TNO Nutrition and Food Research Institute, P.O. Box 360, 3700 AJ Zeist, The Netherlands e-mail: Minekus@voeding.tno.nl Tel.: +31-30-6944616 Fax: +31-30-6957224, NL;(2) Laboratoire de Microbiologie INRA, C.R. de Clermont-Theix, F-63122 Saint-Genest, Champanelle, France, FR;(3) CRNH/LTNA Faculté de médicine et de Pharmacie, Université Auvergne, 28 pl Henri Dunant, F-63001 Clermont-Ferrand, France, FR;(4) Laennec Hospital, Department of Gastroenterology, 42 Rue de Sèvres, F-7507 Paris, France, FR;(5) Faculty of Veterinary Medicine, University Utrecht, P.O. Box 80.165 3508 TD, Utrecht, The Netherlands, NL
Abstract:This paper introduces a new type of system to simulate conditions in the large intestine. This system combines removal of metabolites and water with peristaltic mixing to obtain and handle physiological concentrations of microorganisms, dry matter and microbial metabolites. The system has been designed to be complementary to the dynamic multi-compartmental system that simulates conditions in the stomach and small intestine described by Minekus et al. Minekus M, Marteau P, Havenaar R, Huis in't Veld JHJ (1995) ATLA 23:197–209]. High densities of microorganisms, comparable to those found in the colon in vivo, were achieved by absorption of water and dialysis of metabolites through hollow-fibre membranes inside the reactor compartments. The dense chyme was mixed and transported by peristaltic movements. The potential of the system as a tool to study fermentation was demonstrated in experiments with pectin, fructo-oligosaccharide, lactulose and lactitol as substrates. Parameters such as total acid production and short-chain fatty acid (SCFA) patterns were determined with time to characterize the fermentation. The stability of the microflora in the system was tested after inoculation with fresh fecal samples and after inoculation with a microflora that was main-tained in a fermenter. Both approaches resulted in total anaerobic bacterial counts higher than 1010 colony-forming units/ml with physiological levels of Bifidobacterium, Lactobacillus, Enterobacteriaceae and Clostridium. The dry matter content was approximately 10%, while the total SCFA concentration was maintained at physiological concentrations with similar molar ratios for acetic acid, propionic acid and butyric acid as measured in vivo. Received: 4 February 1999 / Received revision: 4 June 1999 / Accepted: 4 June 1999
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号