Abstract: | The angiotensin converting enzyme catalyzed hydrolysis of furanacryloyl-Phe-Gly-Gly is activated by monovalent anions in the order C1- greater than Br- greater than F- greater than NO3- greater than CH3COO-. In the alkaline pH region, increasing anion concentrations decrease the KM but do not change the kcat. This behavior is characteristic of an ordered bireactant mechanism in which the anion binds to the enzyme prior to the substrate. At acidic pH values, however, the anion activation is a result of both a decrease in KM and an increase in kcat, implying a bireactant mechanism in which anion and substrate bind randomly. For both the ordered and the bireactant mechanisms the anion serves as an essential activator. The effect of chloride on enzyme activity was studied over the pH range 5-10 under kcat/KM conditions and demonstrates that the apparent chloride binding constant increases from 3.3 mM at pH 6.0 to 190 mM at pH 9.0. The kcat vs. pH profile exhibits two pK values of 5.6 and 9.6, while the variation of KM with pH is characterized by a pK of 8.9 and a 2-fold increase between pH 6.5 and 7.5. The chloride activation of the hydrolysis of furanacryloyl-Phe-Gly-Gly is compared with that of the physiological substrates angiotensin I and bradykinin. |