首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Folding into a beta-hairpin can prevent amyloid fibril formation
Authors:Hosia Waltteri  Bark Niklas  Liepinsh Edvards  Tjernberg Agneta  Persson Bengt  Hallén Dan  Thyberg Johan  Johansson Jan  Tjernberg Lars
Institution:Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden.
Abstract:The tetrapeptide KFFE is one of the shortest amyloid fibril-forming peptides described. Herein, we have investigated how the structural environment of this motif affects polymerization. Using a turn motif (YNGK) or a less rigid sequence (AAAK) to fuse two KFFE tetrapeptides, we show by several biophysical methods that the amyloidogenic properties are strongly dependent on the structural environment. The dodecapeptide KFFEAAAKKFFE forms abundant thick fibril bundles. Freshly dissolved KFFEAAAKKFFE is monomeric and shows mainly disordered secondary structure, as evidenced by circular dichroism, NMR spectroscopy, hydrogen/deuterium exchange measurements, and molecular modeling studies. In sharp contrast, the dodecapeptide KFFEYNGKKFFE does not form fibrils but folds into a stable beta-hairpin. This structure can oligomerize into a stable 12-mer and multiples thereof, as shown by size exclusion chromatography, sedimentation analysis, and electrospray mass spectrometry. These data indicate that the structural context in which a potential fibril forming sequence is present can prevent fibril formation by favoring self-limiting oligomerization over polymerization.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号