首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Molecular events in B cell activation. I. Signals required to stimulate G0 to G1 transition of resting B lymphocytes
Authors:J G Monroe  M J Kass
Abstract:Anti-immunoglobulin antibodies (anti-Ig) can stimulate a majority of resting B cells via their receptor Ig. Evidence suggests that the signals generated after this ligand-receptor interaction may be transduced via hydrolysis of inositol phospholipids. In other systems, the ability of inositol phospholipid hydrolysis to link receptor-ligand interactions to subsequent activational events has been suggested to relate to the ability of metabolic intermediates of this hydrolytic process to facilitate activation of protein kinase C and mobilization of Ca+2. In this study, we investigated the importance of protein kinase C and Ca+2 mobilization in the signaling mechanism by which anti-Ig drives B cells to undergo G0 to G1 transition. Our results show that pharmacologic inhibition of either protein kinase C activity or channel-mediated Ca+2 influx completely abrogates the increase in RNA synthesis associated with B cell activation after stimulation by anti-Ig. This suggests that pathways leading to both protein kinase C activation and elevation of intracellular Ca+2 are critical for receptor Ig-mediated G0 to G1 transition. Furthermore, studies in which anti-Ig-induced signaling could be bypassed by directly facilitating Ca+2 mobilization and protein kinase C activation using Ca+2 ionophore and phorbol diester show that these events are sufficient to drive the majority of resting B cells into G1 in the absence of additional signaling from accessory cells or extra-cellular factors. However, like anti-Ig-induced stimulation, Ca+2 ionophore and phorbol diester are relatively inefficient in driving B cells that have entered G1 into S phase. We discuss the relevance of these results towards the transduction mechanism linking B cell membrane-associated Ig-generated signals with subsequent activation events.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号