首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Response of Fructan to Water Deficit in Growing Leaves of Tall Fescue
Authors:Spollen W G  Nelson C J
Institution:Department of Agronomy, University of Missouri, Columbia, Missouri 65211.
Abstract:Changes in dry matter and water-soluble carbohydrate components, especially fructan, were examined in the basal 25 mm of expanding leaf blades of tall fescue (Festuca arundinacea Schreb.) to assess their roles in plant response to water deficit. Water was withheld from vegetative plants grown in soil in controlled-environment chambers. As stress progressed, leaf elongation rate decreased sooner in the light period than it did in the dark period. The decrease in growth rate in the dark period was associated with a decrease in local relative elongation rates and a shortening of the elongation zone from about 25 mm (control) to 15 mm. Dry matter content of the leaf base increased 23% during stress, due mainly to increased water-soluble carbohydrate near the ligule and to increased water-soluble, carbohydrate-free dry matter at distal positions. Sucrose content increased 258% in the leaf base, but especially (over 4-fold) within 10 mm of the ligule. Hexose content increased 187% in the leaf base. Content of total fructan decreased to 69% of control, mostly in regions farther from the ligule. Fructan hydrolysis could account for the hexose accumulated. Stress caused the osmotic potential to decrease throughout the leaf base, but more toward the ligule. With stress there was 70% less direct contribution of low-degree-of-polymerization fructan to osmotic potential in the leaf base, but that for sucrose and hexose increased 96 and 67%, respectively. Thus, fructan metabolism is involved but fructan itself contributes only indirectly to osmotic adjustment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号