首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Recombinant Hansenula polymorpha as a biocatalyst: coexpression of the spinach glycolate oxidase (GO) and the S. cerevisiae catalase T (CTT1) gene
Authors:G Gellissen  M Piontek  U Dahlems  V Jenzelewski  J E Gavagan  R DiCosimo  D L Anton  Z A Janowicz
Institution:(1) Rhein Biotech GmbH, Eichsfelder Strasse 11, D-40595 Düsseldorf, Germany, DE;(2) DuPont Central Science & Engineering, Experimental Station, Wilmington, Delaware 19880-0328, USA, US
Abstract: The methylotrophic yeast Hansenula polymorpha has been developed as an efficient production system for heterologous proteins. The system offers the possibility to cointegrate heterologous genes in anticipated fixed copy numbers into the chromosome. As a consequence coproduction of different proteins in stoichiometric ratios can be envisaged. This provides options to design this yeast as an industrial biocatalyst in procedures where several enzymes are required for the efficient conversion of a given inexpensive compound into a valuable product. To this end recombinant strains have been engineered with multiple copies of expression cassettes containing the glycolate oxidase (GO) gene from spinach and the catalase T (CTT1) gene from S. cerevisiae. The newly created strains produce high levels of the peroxisomal glycolate oxidase and the cytosolic catalase T. The strains efficiently convert glycolate into glyoxylic acid, oxidizing the added substrate and decomposing the peroxide formed during this reaction into water and oxygen. Received: 31 October 1995/Received last revision: 23 February 1996/Accepted: 4 March 1996
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号