首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hypothesis. The molecular 'double-pivot' mechanism for water oxidation
Authors:G Christou  J B Vincent
Institution:Department of Chemistry, Indiana University, Bloomington 47405.
Abstract:High-molecular-weight (HMW) kininogen was purified from guinea-pig plasma by measuring its ability to correct the prolonged clotting time in human HMW kininogen deficient plasma (Fitzgerald trait). The purified HMW kininogen demonstrated a homogeneous band in disc gel electrophoresis in the presence of sodium dodecyl sulfate under reducing or non-reducing conditions with an apparent molecular weight of 100,000. Kinin released from HMW kininogen by treatment with guinea-pig plasma kallikrein was identified as bradykinin by reverse-phase HPLC and amino-acid analysis. The capacity of HMW kininogen as a thiol-proteinase inhibitor was realized by its dose-dependent inhibitory activity to papain. The Ki value for papain was estimated to be 42 pM. The kinin-free HMW kininogen maintained the inhibitor and clotting-factor activities with similar capacities to those of the HMW kininogen molecule. Heavy chain (H-chain) and light chain (L-chain) of HMW kininogen were prepared from reduced and alkylated kinin-free HMW kininogen by HPLC. The S-alkylated H-chain, but not L-chain, demonstrated the inhibitor activity with the Ki value 6.9 nM for papain, whereas the S-alkylated L-chain, but not H-chain, maintained the clotting activity one-third of the capacity of HMW kininogen. Specific antibodies recognized HMW kininogen, but also a probable low-molecular-weight kininogen(s) with an apparent molecular weight of 60,000 in the guinea-pig plasma. All of these properties are consistent with the reports on human, bovine and rat HMW kininogen.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号