首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microtubule depolymerization in rat seminiferous epithelium is associated with diminished tyrosination of alpha-tubulin
Authors:Correa L M  Miller M G
Institution:Department of Environmental Toxicology, University of California, Davis, California 95616, USA. imcorrea@ucdavis.edu
Abstract:In the testis, microtubule-disrupting agents cause breakdown of the Sertoli cell cytoskeleton and sloughing of germ cells with associated Sertoli cell fragments, although the mechanism underlying this event is not understood. In this study, we investigated the effects of carbendazim and colchicine on microtubule polymerization status and posttranslational modifications of tubulin in freshly isolated rat seminiferous tubules. Soluble and polymerized tubulin pools were separated and tubulin was quantified using a competitive ELISA. Carbendazim and colchicine caused extensive microtubule depolymerization, shifting the ratio of soluble to polymerized tubulin from 40%:60% to 78%:22%, and to 84%:16%, respectively. Total tubulin levels remained relatively constant after carbendazim treatment but decreased twofold after colchicine treatment. To determine if modifications to tubulin may be associated with polymerization status, tubulin pools were analyzed by immunoblotting. Acetylated alpha-tubulin and betaIII-tubulin distribution in tubulin pools was not affected by treatment. Tyrosinated alpha-tubulin (52 kDa) was localized in both tubulin pools and had decreased tyrosination in the microtubule pool after carbendazim treatment. A 47-kDa protein immunoreactive with both tyrosinated alpha-tubulin and general alpha-tubulin antibodies was found only in the microtubule pool. The 47-kDa protein (potentially an alpha-tubulin isoform) lost tyrosination, yet was still present in the microtubule pool based on detection with the general alpha-tubulin antibody, after carbendazim treatment. Similar effects were seen with colchicine, although loss of total tubulin protein was measured. Thus, decreased tyrosination of the microtubule pool of tubulin appears to be associated with depolymerization of microtubules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号