首页 | 本学科首页   官方微博 | 高级检索  
     


Isolation and characterization of the iron-binding properties of a primitive monolobal transferrin from Ciona intestinalis
Authors:Ritika Uppal  K. V. Lakshmi  Ann M. Valentine
Affiliation:Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT, 06520-8107, USA.
Abstract:Transferrins are bilobal glycoproteins responsible for iron binding, transport, and delivery in many higher organisms. The two homologous lobes of transferrins are thought to have evolved by gene duplication of an ancestral monolobal form. In the present study, a 37.7-kDa primitive monolobal transferrin (nicatransferrin, or nicaTf) from the serum of the model ascidian species Ciona intestinalis was isolated by using an immobilized iron-affinity column and characterized by using mass spectrometry and N-terminal sequencing. The protein binds one equivalent of iron(III) and exhibits an electron paramagnetic resonance spectrum that is anion-dependent. The UV/vis spectrum of nicaTf has a shoulder at 330 nm in both the iron-depleted and the iron-replete forms, but does not display the approximately 460 nm tyrosine-to-iron charge transfer band common to vertebrate serum transferrins under the conditions investigated. This result suggests that iron may adopt a different binding mode in nicaTf compared with the more highly evolved transferrin proteins. This difference in binding mode could have implications for the physiological role of the protein in the ascidian. The genome of C. intestinalis has genes for both a monolobal and a bilobal transferrin, and the sequences of both proteins are discussed in light of the known features of vertebrate serum transferrins as well as other transferrin homologs.
Keywords:Monolobal transferrin  Nicatransferrin  Metal-affinity chromatography  Gene duplication  Evolution
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号