首页 | 本学科首页   官方微博 | 高级检索  
     


Segmentation and somitogenesis derived from phase dynamics in growing oscillatory media
Authors:Kaern M  Menzinger M  Hunding A
Affiliation:Department of Chemistry, University of Toronto, Toronto, ONT, M5S 3H6, Canada. mkaern@alchemy.chem.utoronto.ca
Abstract:The formation of spatially repetitive structures along the growth axis of a developing embryo is a common theme in developmental biology. Here we apply the novel flow-distributed oscillator (FDO) mechanism of wave pattern formation to the problem of axial segmentation in general and to somitogenesis in particular. We argue that the conditions for formation of FDO waves are satisfied during somitogenesis in the chick and mouse and that the waves of gene expression observed in these species arise from phase dynamics in a growing oscillatory medium. We substantiate this claim by showing that the FDO mechanism allows the waves to be mimicked by an inorganic experiment and that it predicts a wavelength that coincides with that observed experimentally. To see whether the FDO mechanism is compatible with other aspects of somitogenesis, we construct an FDO-based model of somitogenesis and successfully test it against a number of experimental observations, including the effect of heat shock. Our analysis provides a rigorous physical basis for the hypothesis that the phase dynamics of a segmental clock controls important stages of segmentation during somitogenesis in the chick and mouse as well as in other organisms that undergo segmentation during their axial growth.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号