Abstract: | The cellular mechanisms involved in the uptake and metabolism of low density lipoprotein (LDL) by cultured normal human fibroblasts have been investigated with the aid of drugs known to disrupt cytoplasmic microtubules or to inhibit membrane fusion. Two drugs which disrupt microtubules by differing mechanisms, colchicine and vinblastine, each reduced the high affinity surface binding of 125I-labelled LDL by fibroblasts. Associated reductions of the endocytosis and degradation of the lipoprotein could be attributed almost entirely to this effect. In contrast, lumicolchicine, an analogue of colchicine without microtubule-disruptive activity, had little or no effect on 125I-labelled LDL metabolism. Each of two groups of membrane-stabilizing agents, the phenothiazines and the tertiary amine local anaesthetics, directly inhibited both the internalization of 125I-labelled LDL following high affinity binding to cell surface receptors and the catabolism of the lipoprotein subsequent to endocytosis, supporting previous morphological evidence for the importance of membrane fusion in these processes. |