首页 | 本学科首页   官方微博 | 高级检索  
     


Leaf flavonoid chemistry of Coreopsis (Compositae) section Palmatae
Authors:Daniel J. Crawford  Edwin B. Smith  Anna M. Mueller
Affiliation:1. Department of Botany, The Ohio State University, 43210, Columbus, OH
2. Department of Botany and Bacteriology, University of Arkansas, 72701, Fayetteville, AR
3. The North Carolina Botanical Garden, 27514, Chapel Hill, NC
Abstract:Examination of leaf flavonoids of all taxa ofCoreopsis sectionPalmatae revealed that most members synthesize an array of common flavone (mostly luteolin and apigenin) glycosides. Each diploid species or diploid member of a species is characterized by a particular ensemble of compounds. These taxa includeC. major, C. verticillata, C. pulchra, C. palmata, andC. tripteris. The latter species differs from all other taxa in producing flavonol (kaempferol and quercetin) glycosides and what appear to be 6-oxygenated compounds. Tetraploids ofC. verticillata exhibit the same flavonoids as diploid members of the species, thus flavonoid chemistry supports the hypothesis that they originated from diploids within the species. Certain populations of hexaploid and octoploidC. major are similar chemically to diploids, suggesting they also originated as intraspeciflc polyploids. Other populations of these polyploids exhibit a flavonoid profile which differs from the profile of the diploids, and this profile is nearly identical to the octoploidCoreopsis × delphinifolia. The latter taxon has been viewed by Smith (1976) and Mueller (1974) as an interspecific hybrid betweenC. verticillata andC. major and/orC. tripteris. Species-specific compounds from the former species occur inC. × delphinifolia but no compounds unique to either of the latter two species are discernable. Flavonoid chemistry is not useful in ascertaining whether either or both species have been involved withC. verticillata in producing plants referable toC. × delphinifolia. There is morphological intergradation between octoploidC. major andC. × delphinifolia, and all plants not appearing to be “pure”C. major exhibit a flavonoid chemistry likeC. × delphinifolia. All plants of sectionPalmatae considered to be alloploids (includingC. × delphinifolia) produce the same array of leaf flavonoids, including several “novel” compounds not expressed in the putative parental taxa. Two of the “novel” flavonoids are present in the geographically restricted diploidC. pulchra. The systematic and phylogentic significance of this is not readily apparent.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号