Translocation of 32P between interacting mycelia of a wood-decomposing fungus and ectomycorrhizal fungi in microcosm systems |
| |
Authors: | BJÖ RN LINDAHL,JAN STENLID,STEFAN OLSSON,& ROGER FINLAY |
| |
Affiliation: | Department of Forest Mycology and Pathology, SLU, Box 7026, S-750 07 Uppsala, Sweden; Department of Ecology and Molecular Biology, KVL, Thorvaldsensvej 40, 1871 Fredriksberg C, Denmark; Author for correspondence (tel +46 1867 2725;fax +46 1830 9245;e-mail;). |
| |
Abstract: | Interactions between saprotrophic and ectomycorrhizal fungi have been largely ignored, although their mycelia often share the same microsites. The mycelial systems show general similarity to each other and, although the enzymatic potential of the saprotrophic fungi is generally considered to be higher, the importance of organic nutrient sources to ectomycorrhizal fungi is now widely accepted. In the experiments described here, nutritional interactions involving transfer of elements from one mycelium to the other have been monitored dynamically using radioactive tracers and a non-destructive electronic autoradiography system. Microcosms were used in which mycelial systems of the ectomycorrhizal fungi Suillus variegatus and Paxillus involutus , extending from Pinus sylvestris host plants, were confronted with mycelia of the saprotroph Hypholoma fasciculare extending from wood blocks. The fungi showed a clear morphological confrontation response. The mycorrhizal mycelium often formed dense patches over the Hypholoma mycelia. Up to 25% of the 32P present in the Hypholoma mycelium was captured by the mycorrhizal fungi and translocated to the plant host within 30 d. The transfer of 32P to the saprotroph from labelled mycorrhizal mycelium was one to two orders of magnitude lower. The significance of this transfer as a 'short cut' in nutrient cycling is discussed. |
| |
Keywords: | ectomycorrhiza electronic autoradiography Paxillus involutus nutrient cycling saprotrophic fungi Suillus variegatus |
|
|