首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Theoretical study of the catalytic reaction mechanism of MndD
Authors:Valentin Georgiev  Tomasz Borowski  Per E M Siegbahn
Institution:(1) Department of Physics, Stockholm Center for Physics, Astronomy and Biotechnology, Stockholm University, 106 91 Stockholm, Sweden;(2) Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
Abstract:Manganese-dependent homoprotocatechuate 2,3-dioxygenase (MndD) is an enzyme taking part in the catabolism of aromatic compounds in the environment. It uses molecular oxygen to perform an extradiol cleavage of the ring of the ortho-dihydroxylated aromatic compound homoprotocatechuate. A theoretical investigation of the reaction path for MndD was performed using hybrid density functional theory with the B3LYP functional, and a catalytic mechanism has been suggested. Models of different size were built from the crystal structure of the enzyme and were used in the search for intermediates and transition states. It was found that the substrate first binds at the active site as a monoanion. Next the dioxygen is bound, forming a hydroperoxo intermediate. The O–O bond, activated in this way undergoes homolytic cleavage leading to an oxyl and then to an extra epoxide radical with subsequent opening of the aromatic ring. The lactone ring is then hydrolyzed by the Mn-bound OH group, and the final product is obtained in the last reaction steps. Alternative reaction paths were considered, and their calculated barriers were found to be higher than for the suggested mechanism. The selectivity between the extra- and intra-cleavage pathways was found to be determined by the barriers for the decay of the radical state.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.
Keywords:Homoprotocatechuate  Dioxygenase  Extradiol  Density functional calculations
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号