首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Using 2D In Vivo IVUS-Based Models for Human Coronary Plaque Progression Analysis and Comparison with 3D Fluid-Structure Interaction Models: A Multi-Patient Study
Authors:Hongjian Wang  Jie Zheng  LiangWang  Akiko Maehara  Chun Yang  David Muccigrosso  Richard Bachk  Jian Zhu  Gary S Mintz  Dalin Tang
Abstract:Computational modeling has been used extensively in cardiovascular and biological research, providing valuable information. However, 3D vulnerable plaque model construction with complex geometrical features and multicomponents is often very time consuming and not practical for clinical implementation. This paper investigated if 2D atherosclerotic plaque models could be used to replace 3D models to perform correlation analysis and achieve similar results. In vivo intravascular ultrasound (IVUS) coronary plaque data were acquired from a patient follow-up study to construct 2D structure-only and 3D FSI models to obtain plaque wall stress (PWS) and strain (PWSn) data. One hundred and twenty-seven (127) matched IVUS slices at baseline and follow up were obtained from 3 patients. Our results showed that 2D models overestimated stress and strain by 30% and 33%, respectively, compared to results from 3D FSI models. 2D/3D correlation comparison indicated that 116 out of 127 slices had a consistent correlation between plaque progression (WTI) and wall thickness; 103 out of 127 slices had a consistent correlation between WTI and PWS; and 99 out of 127 slices had a consistent correlation between WTI and PWSn. This leads to the potential that 2D models could be used in actual clinical implementation where quick analysis delivery time is essential.
Keywords:Coronary  2D structure-only  fluid-structure interaction  plaque rupture  plaque progression  IVUS  
点击此处可从《Molecular & cellular biomechanics : MCB》浏览原始摘要信息
点击此处可从《Molecular & cellular biomechanics : MCB》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号