首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Engineering of polyploid Saccharomyces cerevisiae for secretion of large amounts of fungal glucoamylase
Authors:Ekino Keisuke  Hayashi Hiroyuki  Moriyama Masahiro  Matsuda Minoru  Goto Masatoshi  Yoshino Sadazo  Furukawa Kensuke
Institution:Department of Applied Microbial Technology, Sojo University, Kumamoto, 860-0082, Japan.
Abstract:We engineered Saccharomyces cerevisiae cells that produce large amounts of fungal glucoamylase (GAI) from Aspergillus awamori var. kawachi. To do this, we used the delta-sequence-mediated integration vector system and the heat-induced endomitotic diploidization method. delta-Sequence-mediated integration is known to occur mainly in a particular chromosome, and the copy number of the integration is variable. In order to construct transformants carrying the GAI gene on several chromosomes, haploid cells carrying the GAI gene on different chromosomes were crossed with each other. The cells were then allowed to form spores, which was followed by dissection. Haploid cells containing GAI genes on multiple chromosomes were obtained in this way. One such haploid cell contained the GAI gene on five chromosomes and exhibited the highest GAI activity (5.93 U/ml), which was about sixfold higher than the activity of a cell containing one gene on a single chromosome. Furthermore, we performed heat-induced endomitotic diploidization for haploid transformants to obtain polyploid mater cells carrying multiple GAI genes. The copy number of the GAI gene increased in proportion to the ploidy level, and larger amounts of GAI were secreted.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号