Attenuation of apoptotic DNA fragmentation by amiloride |
| |
Authors: | José M. Cobo,Rafael Garcia-Cañ ero,Joseph G. Valdez,Anna M. Barrasso,Brian L. Sailer,Harry A. Crissman |
| |
Abstract: | Amiloride is a K+-sparing diuretic that effectively inhibits the Na+/H+ transporter in the plasma membrane of most mammalian cells. We have examined the effects of amiloride on the progression of apoptosis in HL-60 cells induced by camptothecin (CAM), cycloheximide (CHX), and 20 Gy gamma irradiation. Spectrofluorometric measurements on cell populations showed an inhibition of Na+/H+ transporter activity and a corresponding decrease in intracellular pH following treatment with amiloride alone, or in combination with the apoptosis-inducing agents. Flow cytometric cell cycle analysis, in combination with DNA strand break analysis, indicated that amiloride diminished endonuclease-mediated degradation of nuclear chromatin 3 h following treatment with CAM or CHX, and prevented degradation for 3 h following gamma radiation treatment. Apoptosis-associated DNA degradation was significantly greater for all three agents in the absence of amiloride. Protection from radiation-induced apoptosis was transient, since apoptotic subpopulations were observed, but still at a decreased level, 5 h following irradiation. Amiloride was as effective as zinc, an inhibitor of Ca2+/Mg2+-dependent endonucleases, in reducing or delaying the onset of endonuclease activity. Data presented show that effects of amiloride on membrane Na+/H+ transporter activity and intracellular pH can potentially affect apoptotic signaling cascades, leading to a retardation in the rate of progression to an apoptotic cell death. Results also point to the involvement of intracellular pH and Ca2+ in the regulation of apoptotic endonuclease activity, and the need for a functional Na+/H+ exchanger for the induction of apoptosis. J. Cell. Physiol. 175:59–67, 1998. © 1998 Wiley-Liss, Inc. |
| |
Keywords: | |
|
|