首页 | 本学科首页   官方微博 | 高级检索  
     


Symmetry breaking in mouse oocytes requires transient F-actin meshwork destabilization
Authors:Azoury Jessica  Lee Karen Wingman  Georget Virginie  Hikal Pascale  Verlhac Marie-Hélène
Affiliation:UMR7622, CNRS/UMPC, College de France, 9 quai Saint Bernard, Paris, France.
Abstract:Female meiotic divisions are extremely asymmetric, giving rise to a large oocyte and small degenerating polar bodies, keeping the maternal stores for further embryo development. This asymmetry is achieved via off-center positioning of the division spindle. Mouse oocytes have developed a formin-2-dependent actin-based spindle positioning mechanism that allows the meiotic spindle to migrate towards the closest cortex. Using spinning disk microscopy and FRAP analysis, we studied the changes in the organization of the cytoplasmic F-actin meshwork during the first meiotic division. It is very dense in prophase I, undergoes a significant density drop upon meiosis resumption and reforms progressively later on. This meshwork remodeling correlates with endogenous formin 2 regulation. High formin 2 levels at meiosis I entry induce meshwork maintenance, leading to equal forces being exerted on the chromosomes, preventing spindle migration. Hence, the meshwork density drop at meiosis resumption is germane to the symmetry-breaking event required for successful asymmetric meiotic divisions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号