首页 | 本学科首页   官方微博 | 高级检索  
   检索      


DNA intramolecular triplexes containing dT --> dU substitutions: unfolding energetics and ligand binding
Authors:Soto Ana Maria  Rentzeperis Dionisios  Shikiya Ronald  Alonso Michelle  Marky Luis A
Institution:Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, USA.
Abstract:We used a combination of optical and calorimetric techniques to investigate the incorporation of deoxythymidine --> deoxyuridine (dT --> dU) substitutions in the duplex and third strand of the parallel intramolecular triplex d(A(7)C(5)T(7)C(5)T(7)) (ATT). UV and differential scanning calorimetry melting experiments show that the incorporation of two substitutions yielded triplexes with lower thermal stability and lower unfolding enthalpies. The enthalpies decrease with an increase in salt concentration, indirectly yielding a heat capacity effect, and the magnitude of this effect was lower for the substituted triplexes. The combined results indicate that the destabilizing effect is due to a decrease in the level of stacking interactions. Furthermore, the minor groove ligand netropsin binds to the minor groove and to the hydrophobic groove, created by the double chain of thymine methyl groups in the major groove of these triplexes. Binding of netropsin to the minor groove yielded thermodynamic profiles similar to that of a DNA duplex with a similar sequence. However, and relative to ATT, binding of netropsin to the hydrophobic groove has a decreased binding affinity and lower binding enthalpy. This shows that the presence of uridine bases disrupts the hydrophobic groove and lowers its cooperativity toward ligand binding. The overall results suggest that the stabilizing effect of methyl groups may arise from the combination of both hydrophobic and electronic effects.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号