首页 | 本学科首页   官方微博 | 高级检索  
     


Carbonic anhydrase inhibitors. Interaction of isozymes I, II, IV, V, and IX with phosphates, carbamoyl phosphate, and the phosphonate antiviral drug foscarnet
Authors:Rusconi Stefano  Innocenti Alessio  Vullo Daniela  Mastrolorenzo Antonio  Scozzafava Andrea  Supuran Claudiu T
Affiliation:Istituto di Malattie Infettive e Tropicali, Università degli Studi di Milano, Ospedale Luigi Sacco, via G.B. Grassi 74, 20157 Milano, Italy.
Abstract:A detailed inhibition study of five carbonic anhydrase (CA, EC 4.2.1.1) isozymes with inorganic phosphates, carbamoyl phosphate, the antiviral phosphonate foscarnet as well as formate is reported. The cytosolic isozyme hCA I was weakly inhibited by neutral phosphate, strongly inhibited by carbamoyl phosphate (K(I) of 9.4 microM), and activated by hydrogen- and dihydrogenphosphate, foscarnet and formate (best activator foscarnet, K(A)=12 microM). The cytosolic isozyme hCA II was weakly inhibited by all the investigated anions, with carbamoyl phosphate showing a K(I) of 0.31 mM. The membrane-associated isozyme hCA IV was the most sensitive to inhibition by phosphates/phosphonates, showing a K(I) of 84 nM for PO(4)(3-), of 9.8 microM for HPO(4)(2-), and of 9.9 microM for carbamoyl phosphate. Foscarnet was the best inhibitor of this isozyme (K(I) of 0.82 mM) highly abundant in the kidneys, which may explain some of the renal side effects of the drug. The mitochondrial isozyme hCA V was weakly inhibited by all phosphates/phosphonates, except carbamoyl phosphate, which showed a K(I) of 8.5 microM. Thus, CA V cannot be the isozyme involved in the carbamoyl phosphate synthetase I biosynthetic reaction, as hypothesized earlier. Furthermore, the relative resistance of CA V to inhibition by inorganic phosphates suggests an evolutionary adaptation of this mitochondrial isozyme to the presence of high concentrations of such anions in these energy-converting organelles, where high amounts of ATP are produced by ATP synthetase, from ADP and inorganic phosphates. The transmembrane, tumor-associated isozyme hCA IX was on the other hand slightly inhibited by all these anions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号