首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Soluble phosphatidylserine triggers assembly in solution of a prothrombin-activating complex in the absence of a membrane surface
Authors:Majumder Rinku  Weinreb Gabriel  Zhai Xin  Lentz Barry R
Institution:Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA.
Abstract:Factor X(a) (FX(a)) binding to factor V(a) (FV(a)) on platelet-derived membranes containing surface-exposed phosphatidylserine (PS) forms the "prothrombinase complex" that is essential for efficient thrombin generation during blood coagulation. There are two naturally occurring isoforms of FV(a), FV(a1) and FV(a2). These two isoforms differ by a 3-kDa polysaccharide chain (at Asn(2181) in human FV(a1) (Kim, S. W., Ortel, T. L., Quinn-Allen, M. A., Yoo, L., Worfolk, L., Zhai, X., Lentz, B. R., and Kane, W. H. (1999) Biochemistry 38, 11448-11454)) and have different coagulant activities. We examined the interaction of the two bovine isoforms with active site-labeled FX(a), finding no significant difference. A soluble form of PS (C6PS) bound to FV(a1) and FV(a2) with comparable affinities (K(d) = 11-12 microm) and changes in FV(a) intrinsic fluorescence. At concentrations well below its critical micelle concentration, C6PS binding to bovine FV(a2) enhanced its affinity for FX(a) in solution by nearly 3 orders of magnitude (K(d)(eff) = 40-2 nm over a C6PS range of 30-400 microm) but had no effect on the affinity of FV(a1) for FX(a) (K(d) = 1 microm). This results in a soluble complex between FX(a) and FV(a2), whose expected molecular weight was confirmed by calibrated native gel electrophoresis. This complex behaved as a normal Michaelis-Menten enzyme in its ability to produce thrombin from meizothrombin (apparent k(cat)/K(m) congruent with 10(9) m(-1) s(-1)). The ability of soluble PS to trigger formation of a soluble prothrombinase complex suggests that exposure of PS molecules during platelet activation is likely the key event responsible for the assembly of an active membrane-bound complex.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号