首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modelling zinc-binding proteins with GADGET: genetic algorithm and distance geometry for exploring topology
Authors:Petersen Kjell  Taylor William R
Institution:Department of Informatics, University of Bergen, PB7800, N-5020 Bergen, Norway.
Abstract:A novel combination of optimization methods (Genetic Algorithm with Distance Geometry) has been developed and shown to find near-optimal solutions to a set of imposed structural constraints. With this modelling tool (GADGET), the fold-space of a variety of small zinc-binding proteins was investigated under the constraints required to form a zinc-binding site (or pair of sites). Analysis of the results concentrated on the ring-finger domain as the "classic" zinc-finger domains were too constrained to provide much topological variety, whilst the TFIIH domain (which has large unstructured loops) did not behave well. The intermediate ring-finger domain, however, was found to adopt a variety of different folds, many of which had near-optimal scores under the fitness function employed in GADGET (forming good secondary structures and zinc-coordination). Although the native fold was dominant amongst the solutions, the discovery of good alternate folds shows that even the eight residues constrained to form two zinc-binding sites was not sufficient to uniquely determine the native fold. Despite this, the fold-space of 48 theoretically possible folds was greatly reduced with just six topologies found in significant numbers.
Keywords:GA  genetic algorithm
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号