DAMP-mediated autophagy contributes to drug resistance |
| |
Authors: | Liu Liying Yang Minghua Kang Rui Wang Zhuo Zhao Yiming Yu Yan Xie Min Yin Xiaocheng Livesey Kristen M Loze Michael T Tang Daolin Cao Lizhi |
| |
Affiliation: | Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China. |
| |
Abstract: | Damage-associated molecular pattern molecules (DAMPs) are cellularly derived molecules that can initiate and perpetuate immune responses following trauma, ischemia and other types of tissue damage in the absence of pathogenic infection. High mobility group box 1 (HMGB1) is a prototypical DAMP and is associated with the hallmarks of cancer. Recently we found that HMGB1 release after chemotherapy treatment is a critical regulator of autophagy and a potential drug target for therapeutic interventions in leukemia. Overexpression of HMGB1 by gene transfection rendered leukemia cells resistant to cell death; whereas depletion or inhibition of HMGB1 and autophagy by RNA interference or pharmacological inhibitors increased the sensitivity of leukemia cells to chemotherapeutic drugs. HMGB1 release sustains autophagy as assessed by microtubule-associated protein 1 light chain 3 (LC3) lipidation, redistribution of LC3 into cytoplasmic puncta, degradation of p62 and accumulation of autophagosomes and autolysosomes. Moreover, these data suggest a role for HMGB1 in the regulation of autophagy through the PI3KC3-MEKERK: pathway, supporting the notion that HMGB1-induced autophagy promotes tumor resistance to chemotherapy. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|