首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Paraquat- and diquat-induced oxygen radical generation and lipid peroxidation in rat brain microsomes
Authors:Yumino Kunio  Kawakami Ikuo  Tamura Mamoru  Hayashi Takaaki  Nakamura Masao
Institution:Division of Biophysics, Institute for Electronic Science, Hokkaido University, Sapporo 060-8638, Japan.
Abstract:NADPH-menadione reductase activity by rat brain microsomes (Ms) was decreased 40-50% by 10 microM dicumarol, a potent inhibitor of DT-diaphorase, whereas no change in NADPH-paraquat (PQ) and -diquat (DQ) reductase activity was observed. NADPH-DQ reductase activity in brain Ms was 2.5-fold higher than NADPH-PQ reductase activity. The formation of PQ and DQ radicals was verified optically and observed directly by ESR spectroscopy in the NADPH-PQ and -DQ reductase reactions by brain Ms under anaerobic conditions. PQ- and DQ-induced superoxide formation was confirmed by the detection of DMPO-OOH ESR signals and followed by chemiluminescence (CL) of a Cypridina luciferin analogue (CLA). The kinetics and intensity of the CL were consistent with the observations that the reduction in DQ is faster than that in PQ. Thiobarbituric acid reactive substances (TBARS) and phospholipid hydroperoxides in brain Ms increased in the presence of NADPH and Fe3+. The generation of both lipid peroxidation products derived from brain Ms decreased with increasing concentrations of PQ and DQ. The inhibitory effect of DQ is more pronounced than that of PQ. The formation of PQ- and DQ-induced reactive oxygen species was not associated with lipid peroxidation in rat brain Ms.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号