PCR microfluidic devices for DNA amplification |
| |
Authors: | Zhang Chunsun Xu Jinliang Ma Wenli Zheng Wenling |
| |
Affiliation: | Micro-Energy System Laboratory, Guangzhou Institute of Energy Conversion, The Chinese Academy of Sciences, No. 1 Nengyuan Road, Wushan, Tianhe District, Guangzhou 510640, PR China. |
| |
Abstract: | The miniaturization of biological and chemical analytical devices by micro-electro-mechanical-systems (MEMS) technology has posed a vital influence on such fields as medical diagnostics, microbial detection and other bio-analysis. Among many miniaturized analytical devices, the polymerase chain reaction (PCR) microchip/microdevices are studied extensively, and thus great progress has been made on aspects of on-chip micromachining (fabrication, bonding and sealing), choice of substrate materials, surface chemistry and architecture of reaction vessel, handling of necessary sample fluid, controlling of three or two-step temperature thermocycling, detection of amplified nucleic acid products, integration with other analytical functional units such as sample preparation, capillary electrophoresis (CE), DNA microarray hybridization, etc. However, little has been done on the review of above-mentioned facets of the PCR microchips/microdevices including the two formats of flow-through and stationary chamber in spite of several earlier reviews [Zorbas, H. Miniature continuous-flow polymerase chain reaction: a breakthrough? Angew Chem Int Ed 1999; 38 (8):1055–1058; Krishnan, M., Namasivayam, V., Lin, R., Pal, R., Burns, M.A. Microfabricated reaction and separation systems. Curr Opin Biotechnol 2001; 12:92–98; Schneegaβ, I., Köhler, J.M. Flow-through polymerase chain reactions in chip themocyclers. Rev Mol Biotechnol 2001; 82:101–121; deMello, A.J. DNA amplification: does ‘small’ really mean ‘efficient’? Lab Chip 2001; 1: 24N–29N; Mariella, Jr. R. MEMS for bio-assays. Biomed Microdevices 2002; 4 (2):77–87; deMello AJ. Microfluidics: DNA amplification moves on. Nature 2003; 422:28–29; Kricka, L.J., Wilding, P. Microchip PCR. Anal BioAnal Chem 2003; 377:820–825]. In this review, we survey the advances of the above aspects among the PCR microfluidic devices in detail. Finally, we also illuminate the potential and practical applications of PCR microfluidics to some fields such as microbial detection and disease diagnosis, based on the DNA/RNA templates used in PCR microfluidics. It is noted, especially, that this review is to help a novice in the field of on-chip PCR amplification to more easily find the original papers, because this review covers almost all of the papers related to on-chip PCR microfluidics. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|