首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Caspase-3-truncated type 1 inositol 1,4,5-trisphosphate receptor enhances intracellular Ca2+ leak and disturbs Ca2+ signalling.
Authors:Leen Verbert  Bora Lee  Sarah L Kocks  Zerihun Assefa  Jan B Parys  Ludwig Missiaen  Geert Callewaert  Rafael A Fissore  Humbert De Smedt  Geert Bultynck
Institution:Laboratory of Molecular and Cellular Signalling, Division of Physiology, Department of Molecular Cell Biology, K.U. Leuven, Campus Gasthuisberg, O&N1 bus 802, B-3000 Leuven, Belgium.
Abstract:BACKGROUND INFORMATION: The IP(3)R (inositol 1,4,5-trisphosphate receptor) is a tetrameric channel that accounts for a large part of the intracellular Ca(2+) release in virtually all cell types. We have previously demonstrated that caspase-3-mediated cleavage of IP(3)R1 during cell death generates a C-terminal fragment of 95 kDa comprising the complete channel domain. Expression of this truncated IP(3)R increases the cellular sensitivity to apoptotic stimuli, and it was postulated to be a constitutively active channel. RESULTS: In the present study, we demonstrate that expression of the caspase-3-cleaved C-terminus of IP(3)R1 increased the rate of thapsigargin-mediated Ca(2+) leak and decreased the rate of Ca(2+) uptake into the ER (endoplasmic reticulum), although it was not sufficient by itself to deplete intracellular Ca(2+) stores. We detected the truncated IP(3)R1 in different cell types after a challenge with apoptotic stimuli, as well as in aged mouse oocytes. Injection of mRNA corresponding to the truncated IP(3)R1 blocked sperm factor-induced Ca(2+) oscillations and induced an apoptotic phenotype. CONCLUSIONS: In the present study, we show that caspase-3-mediated truncation of IP(3)R1 enhanced the Ca(2+) leak from the ER. We suggest a model in which, in normal conditions, the increased Ca(2+) leak is largely compensated by enhanced Ca(2+)-uptake activity, whereas in situations where the cellular metabolism is compromised, as occurring in aging oocytes, the Ca(2+) leak acts as a feed-forward mechanism to divert the cell into apoptosis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号