首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Anaerobic oxidation of cysteine to cystine by manganese(III) in aqueous acetic acid
Authors:Christian W Salamon
Institution:Institute of Applied Synthetic Chemistry, Technical University of Vienna, Getreidemarkt 9/163, A-1060 Vienna, Austria
Abstract:The anaerobic oxidation of cysteine, Cys, by Mn(III) in acetic acid solutions has been followed by use of a stopped-flow spectrophotometric method at a temperature of 20 °C. The formation and disappearance of the Mn(OAc)2Cys] complex was monitored at 350 nm. The rate depends strongly on the acetic acid concentration (and hence also on pH) and led to the conclusion that more than one cysteine-containing species was involved. These mono-cysteinyl complexes are formed by the loss of two protons from the cysteine - one from the - SH and the other from either the -NH3+ or, more likely, the -COOH which is partially protonated at the low pH values involved (0.5-2.5). The rate-determining reprotonation of the bound -COO (or -NH2) is then accompanied by internal electron transfer yielding Mn(II) and the cysteinyl radical, Cys•, which then dimerises to form (inactive) cystine. At high acetic acid concentrations (60-90% AcOH) the tris-acetato species, Mn(OAc)3], predominates together with some of the bis-complex, Mn(OAc)2]+, and the active species is Mn(OAc)2Cys] which decomposes with a rate constant of k2=16.8±0.9 M−1 s−1. At low acetic acid concentrations (20-30% AcOH) the mono-acetato species predominates and the reactive species is Mn(OH)Cys] for which the rate of decomposition=k2=(1.32±0.11)×104 M−1 s−1. The relative values of the rate constants obtained are discussed, as is the bonding of cysteine to manganese(III).
Keywords:Cys  Cysteine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号