首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chemical modelling applications to experimental recirculating streams
Authors:W A House  N Shelley  A M Fox
Institution:(1) Freshwater Biological Association, River Laboratory, East Stoke, Wareham, BH20 6BB Dorset, UK
Abstract:Chemical models describing the precipitation of calcium carbonate, coprecipitation of inorganic phosphate, carbon dioxide and oxygen transfer through the air-water interface have been applied to results from a recirculating experimental stream. The transfer velocities for carbon dioxide and oxygen transfer for the experimental stream were determined as 1.00 × 10–4 m s–1 and 0.0058 m min–1 (at 20°C) respectively. During a 24-hour long experiment the stream, containing a varied biota dominated by the macro-algae Zygnema, was monitored to evaluate changes in the water chemistry. The calcite precipitation rate varied during the experiment reflecting changes in temperature, supersaturation of the water and local variation in the solution chemistry at the growth sites. The rate constant was evaluated from a chemical mechanistic model as 516.7 ± 27.2 mol h–1 at 10 °C. The coprecipitation of inorganic phosphate, which accompanied calcite growth, accounted for < 6% of the total phosphorus loss. The constant uptake of phosphorus by plants and algae was estimated as sime0.22 mgrmol h–1 g–1 dry weight). The rates of production of oxygen and consumption of inorganic carbon in the experimental stream, after taking account of gas transfer and calcite precipitation, were also computed and found to be in good agreement during the experiment. The maximum rate of production of oxygen was sime 3.5 × 10–4 mol h–1 g–1 (dry weight).
Keywords:Streams  carbon dioxide  oxygen  calcite  phosphate coprecipitation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号