首页 | 本学科首页   官方微博 | 高级检索  
     


Studies of copper transport in cultured bovine chondrocytes
Authors:Rose S. Fife  Stephanie Moody  Deborah Houser  Carmen Proctor
Affiliation:Departments of Medicine and Biochemistry and Molecular Biology, Indiana University School of Medicine, 541 Clinical Drive, Clinical Building 492, Indianapolis, IN 46202-5103 USA
Abstract:Copper serves as the cofactor for a number of important enzymes in cartillage, as well as in other tissues, including lysyl oxidase, superoxide dismutase, and cytochrome oxidase. Ceruloplasmin is resposible for the transport of approx. 95% of the copper in serum, but the mechanisms for intracellular copper transport are unknown. We have demonstrated recently that a high-molecular-weight cartilage glycoprotein, referred to as CMGP, has regions of sequence homology with ceruloplasmin. CMGP also binds copper and has at least some oxidase activity similar to that of ceruloplasmin. Other tissues synthesize intracellular ceruloplasmin-like proteins. The present report represents part of an effort examine the hypothesis the CMGP is a copper transport protein in chondrocytes and to characterize the enzymatic activities of CMGP. These studies demonstrate that CMGP is the principal chondrocyte protein labeled by 67Cu in vitro and that the label is localized to the mitochondria, cytosol, and membrane fractions of sucrose gradients, suggesting copper transport through the cell. In parallel experiments, [3H]leucine was incorporated into proteins corresponding to the subunits and fragments of CMGP, as described previously, and in a similar distribution among the subcellular fractions as labeled copper. Additionally, CMGP has oxidase and ferroxidase activities similar to those of ceruloplasmin.
Keywords:Cartilage, Glycoprotein  Copper  Chondrocyte  Metabolism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号