Tangier disease: isolation and characterization of LpA-I,LpA-II,LpA-I:A-II and LpA-IV particles from plasma |
| |
Authors: | P. Duchateau D. Rader N. Duverger N. Theret C. De Geitere H.B. Brewer J.C. Fruchart G.R. Castro |
| |
Affiliation: | 1. Institut Pasteur, INSERM U. 325, Lille France;2. Molecular Disease Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA |
| |
Abstract: | Tangier disease (TD) is characterized by extremely low plasma levels of HDL, apoA-I and apoA-II due to very rapid catabolism. However, the risk of premature coronary heart disease (CHD) is not markedly increased in TD. In order to gain insight into reverse cholesterol transport in TD, we isolated LpA-I, LpA-I:A-II, LpA-II and LpA-IV particles from fasting plasma of 5 TD patients. LpA-I composition was similar to control LpA-I, but TD LpA-I had more LCAT and CETP activity (respectively, 0.35 ± 0.14 and 0.14 ± 0.04 μmol of cholesterol esterified/h/μg of protein, and 7 ± 2.5 and 1.4 ± 0.3 μmol of cholesteryl ester transferred/h/μg of protein). In contrast, TD LpA-I:A-II had abnormal composition, with a low molar ratio of apoA-I to apoA-II (0.2–1.33). In addition, LpA-I:A-II in TD contained a substantial amount of apoA-IV compared with control, making this particle an LpA-I:A-II:A-IV complex. LpA-I:A-II from normal plasma do not promote cholesterol efflux from adipocytes cells, whereas TD LpA-I:A-II:A-IV complexes promoted cholesterol efflux from these cells. Moreover LpA-I:A-II:A-IV complexes have more LCAT and CETP activity than control (respectively 1.2 ± 0.16 and 0.01 ± 0.01 μmol of cholesterol esterified/h/μg of protein and, 41 ± 3.7 and 1 ± 0.4 μmol of cholesteryl ester transferred /h/μg of protein). The LpA-II particle in TD represented in fact in LpA-II: A-IV complex (75% mol apoA-II and 22% mol apoA-IV). This particle did not promote cholesterol efflux, but LCAT and CETP activity were present. LpA-IV particles had the capacity to promote cholesterol efflux and had both LCAT and CETP activity. LpA-IV may contribute to maintain the reverse cholesterol transport in TD. Our results indicate the potential importance of apoA-IV in maintaining reverse cholesterol transport in TD. In spite of the low steady state HDL-cholesterol levels in TD, LpA-I, LpA-I: A-II: A-IV complex and LpA-IV appear to be active in reverse cholesterol transport and may help to prevent premature CHD in TD. |
| |
Keywords: | High density lipoprotein Tangier disease Plasma lipoprotein Cholesterol transport Apolipoprotein |
本文献已被 ScienceDirect 等数据库收录! |
|