首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Disruption of dTDP-rhamnose biosynthesis modifies lipopolysaccharide core, exopolysaccharide production, and root colonization in Azospirillum brasilense
Authors:Jofré Edgardo  Lagares Antonio  Mori Gladys
Institution:Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36-Km 601, 5800 Río Cuarto, Córdoba, Argentina. ejofre@exa.unrc.edu.ar
Abstract:The interaction between Azospirillum brasilense and plants is not fully understood, although several bacterial surface components like exopolysaccharides (EPS), flagella, and capsular polysaccharides are required for attachment and colonization. While in other plant-bacteria associations (Rhizobium-legume, Pseudomonas-potato), lipopolysaccharides (LPS) play a key role in the establishment of an effective association, their role in the root colonization by Azospirillum had not been determined. In this study, we isolated a Tn5 mutant of A. brasilense Cd (EJ1) with an apparently modified LPS core structure, non-mucoid colony morphology, increased EPS production, and affected in maize root colonization. A 3790-bp region revealed the presence of three complete open reading frames designated rmlC, rmlB and rmlD. The beginning of a fourth open reading frame was found and designated rmlA. These genes are organized in a cluster which shows homology to the cluster involved in the synthesis of dTDP-rhamnose in other bacteria. Additionally, the analysis of the monosaccharide composition of LPSs showed a diminution of rhamnose compared to the wild-type strain.
Keywords:Lipopolysaccharide  Exopolysaccharide  Gas-liquid chromatography-mass spectrometry  dTDP-rhamnose              Azospirillum brasilense
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号