首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A Two-Stage System for the Large-Scale Cultivation of Biomass: a Design and Operation Analysis Based on a Simple Steady-State Model Tuned on Laboratory Measurements
Authors:Carlos Eduardo de Farias Silva  Alberto Bertucco
Institution:1.Department of Industrial Engineering,University of Padova,Padova,Italy
Abstract:The optimal design and operation at large scale of a continuous fermentation process including a biological reactor/photobioreactor and a gravity settler with partial recycle and purge of the biomass are addressed. The proposed method is developed with reference to microalgae (Scenedesmus obliquus) cultivation, but it can be applied to any fermentation process as well as to activated sludge wastewater treatment. A procedure is developed to predict the effect of process variables, mainly the recycle ratio (R), the solid retention time (θ c ), the reactor residence time (θ), and the ratio between feed and purge flow rates (F I /F W ). It includes a simple steady-state model of the two units coupled in the process and the experimental measurement of basic kinetic data, in both the bioreactor and the settler, for the tuning of model parameters. The bioreactor is assumed as perfectly mixed, and a rigorous gravity-flux approach is used for the settler. The process model is solved in terms of dimensionless variables, and plots are given to allow sensitivity analyses and optimization of operating conditions. A discussion about washout is presented, and a simple method is outlined for the calculation of the minimum values of residence time (θ min ) and recycle ratio (R min ) and of the maximum allowed recycle ratio (R max,operating ) and biomass purge rate (F Wmax ). In particular, it is shown that the system is sensitive to the concentration of biomass lost from the top of the settler (C X S ). The proposed method can be useful for the design and analysis of large-scale processes of this type.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号