首页 | 本学科首页   官方微博 | 高级检索  
     


Salmonella Type III Secretion Effector SlrP Is an E3 Ubiquitin Ligase for Mammalian Thioredoxin
Authors:Joaqu��n Bernal-Bayard and Francisco Ramos-Morales
Affiliation:From the Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain
Abstract:Salmonella enterica encodes two virulence-related type III secretion systems in Salmonella pathogenicity islands 1 and 2, respectively. These systems mediate the translocation of protein effectors into the eukaryotic host cell, where they alter cell signaling and manipulate host cell functions. However, the precise role of most effectors remains unknown. Using a genetic screen, we identified the small, reduction/oxidation-regulatory protein thioredoxin as a mammalian binding partner of the Salmonella effector SlrP. The interaction was confirmed by affinity chromatography and coimmunoprecipitation. In vitro, SlrP was able to mediate ubiquitination of ubiquitin and thioredoxin. A Cys residue conserved in other effectors of the same family that also possess E3 ubiquitin ligase activity was essential for this catalytic function. Stable expression of SlrP in HeLa cells resulted in a significant decrease of thioredoxin activity and in an increase of cell death. The physiological significance of these results was strengthened by the finding that Salmonella was able to trigger cell death and inhibit thioredoxin activity in HeLa cells several hours post-infection. This study assigns a functional role to the Salmonella effector SlrP as a binding partner and an E3 ubiquitin ligase for mammalian thioredoxin.Protein secretion is a basic function in all groups of bacteria. Many secretion systems have been found in Gram-negative bacteria, from the relatively simple type I secretion systems to the complex type III or type IV machines or the recently described type VI systems (reviewed in Refs. 1 and 2). Many pathogenic or symbiotic Gram-negative bacteria rely on type III secretion systems (T3SS)2 for their interaction with host organisms. The T3SS is a protein export pathway that spans the inner membrane, periplasmic space, outer membrane, and host cell membrane. These complex structures are related to flagella and consist of at least 20 different subunits that enable the bacteria to translocate substrates into the cytosol of the eukaryotic host cell (reviewed in Ref. 3). These systems have also been referred to as injectisomes or molecular needles (4).Proteins secreted and translocated into eukaryotic cells through T3SS are called “effectors.” These effectors have the ability to suppress host defense signaling. Effectors of plant pathogens may target salicylic acid- and abscisic acid-dependent defenses, host vesicle trafficking, or interfere with host RNA metabolism. Effectors from animal pathogens modify the cytoskeleton to facilitate bacterial entry, modulate Rho GTPases and NF-κB, inhibit the host inflammatory response, elicit death of immune cells, and disrupt both adaptative and innate immune responses (reviewed in Ref. 5).Salmonella enterica produces two distinct T3SS essential for virulence that are encoded by genes located in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2), respectively. The SPI-1 T3SS secretes at least 16 proteins: AvrA, GogB, SipA, SipB, SipC, SipD, SlrP, SopA, SopB/SigD, SopD, SopE, SopE2, SptP, SspH1, SteA, and SteB (68). Six of them have been shown to regulate actin cytoskeleton dynamics (reviewed in Ref. 9). 19 SPI-2 T3SS effectors have been identified: GogB, PipB, PipB2, SifA, SifB, SopD2, SseF, SlrP, SseG, SseI/SrfH, SseJ, SseK1, SseK2, SseL, SspH1, SspH2, SteA, SteB, and SteC. However, the biochemical functions of most of them remain unknown (reviewed in Ref. 10).The conventional paradigm, supported by in vivo and in vitro studies, is that the SPI-1-encoded T3SS is required for the invasion of M cells and cultured epithelial cells (11, 12) as well as for the inflammatory response of the intestinal cells, and that the SPI-2-encoded T3SS is essential for replication and survival within macrophages and the progression of a systemic infection (13). Recent evidence suggests that the boundaries between SPI-1 and SPI-2 function are not sharply defined: some SPI-1 effectors are detected hours or days after infection and SPI-2-encoded genes may be expressed before penetration of the intestinal epithelium. In addition, as can be noticed comparing the lists of effectors above, some effectors, including SlrP, can be secreted by both T3SS.SlrP (for Salmonella leucine-rich repeat protein) was identified as a S. enterica serovar Typhimurium host range factor by signature-tagged mutagenesis (14). A mutant in this gene has no difference in virulence with the wild-type strain when infecting calves but is 6-fold attenuated for mouse virulence after oral infection. This gene is located in a 2.9-kb DNA region with features of horizontal acquisition and has similarity to yopM from Yersinia spp. and ipaH from Shigella flexneri. The predicted protein contains 10 copies of a leucine-rich repeat signature, a protein motif frequently involved in protein-protein interactions. Other members of the leucine-rich repeat family in Salmonella are the effectors SspH1 and SspH2, which share 39 and 38% amino acid identity with SlrP, respectively. Similarity in the amino-terminal region of these three proteins helped to define a translocation signal that was also found in four other T3SS effectors: SifA, SifB, SseI, and SseJ (15). Although SlrP can be delivered into mammalian cells by both T3SS, its expression seems to be induced by RtsA, one of the main regulators of SPI-1, independently of HilA or InvF (16).Although the function of SlrP was completely unknown, the presence of leucine-rich repeats in this protein suggested that it may bind eukaryotic proteins during infection. In addition, recent reports have shown an enzymatic activity, E3 ubiquitin ligase, for effectors of the same family (17, 18).In this work we demonstrate that SlrP interacts with mammalian thioredoxin-1 (Trx). We also show that SlrP is an E3 ubiquitin ligase that can use Trx as a substrate. Our results support a model in which interaction of SlrP with Trx leads to a decrease in thioredoxin activity and triggers host cell death.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号